Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Conservation Letters ; 16(2), 2023.
Article in English | ProQuest Central | ID: covidwho-2303953

ABSTRACT

Arguably, researching the trade and trafficking of natural resources, such as wildlife crime, environmental crime, trafficking of natural commodities, unregulated and unreported fishing, factory farming, human–wildlife conflict, to name a few examples, involves all four areas of threat. [...]research can be extremely emotionally taxing for both the researcher and research participants. [...]it offers the researcher an opportunity to think through potentially "risky”, dangerous, harmful, and ethically compromising fieldwork situations, while reflecting on their own positionality and protection of themselves, research participants, and data. [...]they are required to fill out risk assessments and complete specialized training for hostile environments. With increasing use of qualitative research methods within the wildlife trafficking research field, coupled with the growing importance of human–wildlife interactions exacerbated by the COVID-19 pandemic, this disparity in ethical regulations needs imminent addressing. [...]with the current emphasis on ‘decoloniality', an ethical review process could ensure that parachute social science is avoided, and equity and sustainable collaboration between stakeholders are foregrounded in the research.

2.
Georgofili ; 18(Supplemento 2):196-203, 2021.
Article in Italian | CAB Abstracts | ID: covidwho-2219111

ABSTRACT

Insects are commonly eaten by more than two billion people around the world. EFSA's recent approval of Tenebrio molitor larvae as food paves the way for insect consumption in the European Union. The introduction of insects as food in the diet of Western countries could be an environmental- friendly solution to the growing demand for animal proteins over intensive farming. Despite advances in legislation and food safety, there is still a cultural barrier to be overcome, which still considers insects as organisms harmful to agriculture and humans.

3.
Sustainability ; 14(19):12806, 2022.
Article in English | ProQuest Central | ID: covidwho-2066464

ABSTRACT

Infectious diseases are rooted in unsustainable and unjust human–animal relationships. Zoonoses are facilitated by human proximity to animals, epidemiological risk embedded within factory farms, and exploitation of animals and humans in these intensive livestock production systems. The five major categories of epidemiological risk that factory farms propel include: intensification of production for which homogenous populations are congregated, creation of multi-species farms for which different animals are held within the same farm, long and intensive animal transport increases the likelihood of interaction with other wildlife, ecological characteristics of the pathogen lead to altered pathogen dynamics and antibiotic resistance within a human population through the overuse of antibiotics. Layer and broiler operations in the North American context illustrate these linkages. One Health is offered as a concluding conceptual and aspirational frame for pursuing a more sustainable and just world. This article offers two main messages. First, our relationships with animals directly impact the health of human populations through the transmission and creation of Emerging Infectious Diseases (EIDs). Second, adopting One Health offers a means forward for more just and sustainable human–animal relations and reduction of zoonoses transmission.

4.
Sustainability ; 14(16):9990, 2022.
Article in English | ProQuest Central | ID: covidwho-2024125

ABSTRACT

Environmental problems due to human activities such as deforestation, urbanisation, and large scale intensive farming are some of the major factors behind the rapid spread of many infectious diseases. This in turn poses significant challenges not only in as regards providing adequate healthcare, but also in supporting healthcare workers, medical researchers, policy makers, and others involved in managing infectious diseases. These challenges include surveillance, tracking of infections, communication of public health knowledge and promotion of behavioural change. Behind these challenges lies a complex set of factors which include not only biomedical and population health determinants but also environmental, climatic, geographic, and socioeconomic variables. While there is broad agreement that these factors are best understood when considered in conjunction, aggregating and presenting diverse information sources requires effective information systems, software tools, and data visualisation. In this article, we argue that interactive maps, which couple geographical information systems and advanced information visualisation techniques, provide a suitable unifying framework for coordinating these tasks. Therefore, we examine how interactive maps can support spatial epidemiological visualisation and modelling involving distributed and dynamic data sources and incorporating temporal aspects of disease spread. Combining spatial and temporal aspects can be crucial in such applications. We discuss these issues in the context of support for disease surveillance in remote regions, utilising tools that facilitate distributed data collection and enable multidisciplinary collaboration, while also providing support for simulation and data analysis. We show that interactive maps deployed on a combination of mobile devices and large screens can provide effective means for collection, sharing, and analysis of health data.

5.
SciDev.net ; 2020.
Article in English | ProQuest Central | ID: covidwho-1998353

ABSTRACT

Speed read Intensive agriculture for animal protein source of emerging diseases, experts say But, understanding of animal pathogen spillover incomplete, making pandemic prediction difficult Investment needed in early warning systems, One Health preparedness Sustainable agriculture and better health monitoring needed to break chain of disease transmission in food systems. Environmental hotspots Agriculture and meat production are significant contributors of greenhouse gases, both directly and through land-use change — Andersen notes that the drivers of pandemics are often the same drivers of climate change and biodiversity loss. "Climate change results in changing environmental conditions, which impacts on the ecosystem characteristics and as a result, it changes the distribution of animal species, and therefore also of any microorganisms which they carry,” Dirk Pfeiffer, a professor of veterinary epidemiology at City University of Hong Kong and the Royal Veterinary College in London, tells SciDev.Net.

6.
Journal of Animal Science ; 99(Supplement_3):41-42, 2021.
Article in English | ProQuest Central | ID: covidwho-1831220

ABSTRACT

In August 2019, a fire at Tyson’s Finney County, Kansas, beef plant removed approximately 5% of U.S. beef packing capacity for 3 months. Subsequent COVID-19 pandemic-related precautions and workforce illness caused multiple packing plants across the country to decrease or stop production in the spring of 2020. Both events resulted in feedlots being unable to ship cattle at optimal finish points or according to projection. Estimates of the number of cattle backlogged during 2020 approach 1 million. Producers were faced with decisions on how to manage finished animals that could not be shipped while considering economic, animal welfare, and animal health outcomes. Many factors further complicated the situation including highly volatile markets, the possibility employee quarantine due to personal or family illness would cause operations to be under-staffed, and shortage of available pens for new cattle. Feeders had the option to slow the rate of growth of finished cattle due to the ability of ruminant animals to utilize low-energy feedstuffs or by calculating programmed rates of gain using the net energy system. Instead, many producers chose to attempt maximal rates of gain hoping persistent growth and feeding margins would offset discounts due to heavy carcass weights and excess fatness when the supply chain began moving again. Regarding new placements, the structure of the beef industry is uniquely developed to absorb cattle in stocker and backgrounding operations. This presentation will review the factors impacting cattle production and provide case-studies related to feeding at maintenance and growth rates, efficiencies, and carcass outcomes of held cattle from an operation and industry level.

7.
Water ; 14(7):1033, 2022.
Article in English | ProQuest Central | ID: covidwho-1786119

ABSTRACT

Water monitoring is key to determining the presence of potentially hazardous substances related to urban activities and intensive farming. This research aimed to perform a long-term (four years) quantitative monitoring of selected antibiotics (azithromycin, enrofloxacin, trimethoprim and sulfadiazine) both in rivers and wastewaters belonging to the Ebro River basin (North of Spain). The target antibiotics were chosen on the basis of a preliminary multispecies screening. The analysis of the antibiotics was carried out by LC-MS/MS on wastewater-treatment plant (WWTP) effluent, effluents of a slaughterhouse and hospital, rivers downstream and upstream of these WWTPs, and rivers close to extensive farming areas. The ANOVA test was performed to study the significant differences between the points exposed to concrete emission sources and antibiotic concentration. The monitoring, carried out from 2018 to 2020, has been essential to illustrating the presence of the most abundant antibiotics that were detected in the Ebro River basin. Enrofloxacin has appeared in river waters in significant concentrations, especially near intensive farming, meanwhile azithromycin has been frequently detected in wastewaters.

8.
Sustainability ; 14(2):589, 2022.
Article in English | ProQuest Central | ID: covidwho-1638033

ABSTRACT

Zoonoses have become more frequent and intense. As intensive animal farming plays a role in the emergence of zoonoses, the increase in intensive animal farming increases the risk of future zoonotic outbreaks. This raises the question of to what extent people are aware that intensive animal farming poses a risk to zoonoses. Furthermore, if people would be made aware, would they be willing to take protective measures, such as reducing their animal food consumption? This was investigated in a representative descriptive study of 1009 Dutch citizens. We measured participants’ perception of the risk of intensive animal farming and their perception of the way animals are treated. We measured their willingness to consume fewer animal products and their opinions on governments banning intensive animal farms. Additionally, participants estimated the percentage of meat from intensive farms that they consume. The main results showed that most participants were aware that zoonoses can occur through intensive animal farming, but not where their meat comes from. The majority of participants were willing to change their animal consumption behavior if this could reduce future zoonotic outbreaks.

9.
Land ; 10(12):1345, 2021.
Article in English | ProQuest Central | ID: covidwho-1596875

ABSTRACT

Intensive agriculture and urbanization are putting pressure on natural capital in Aotearoa–New Zealand (NZ), with native ecosystems and water quality suffering degradation. As the population has increased, so development has pushed into the rural–urban fringe. Over the last 30 years, the number of lifestyle properties in NZ has increased dramatically. Many of these properties have been developed on some of NZ’s most productive soils, meaning a loss of provisioning services from this land. However, given their location, these developments present new opportunities for the enhancement and protection of other ecosystem services. This paper presents the findings of an exploratory study conducted on lifestyle block residents in peri-urban Palmerston North. The results showed that these residents have a good sense of environmental stewardship and a desire to plant native species, improve connectivity, and protect their land from the invasion of pests and weeds. These residents are also quite community-focused and protective of their special place. This creates an excellent basis from which to encourage greater collaborative action towards protecting and enhancing biodiversity and to put in place land management strategies that can enhance natural capital and assist in other ecosystem service protection serving to improve the landscape ecology of peri-urban environments.

10.
Environ Resour Econ (Dordr) ; 76(4): 1019-1044, 2020.
Article in English | MEDLINE | ID: covidwho-702134

ABSTRACT

Most infectious diseases in humans originate from animals. In this paper, we explore the role of animal farming and meat consumption in the emergence and amplification of infectious diseases. First, we discuss how meat production increases epidemic risks, either directly through increased contact with wild and farmed animals or indirectly through its impact on the environment (e.g., biodiversity loss, water use, climate change). Traditional food systems such as bushmeat and backyard farming increase the risks of disease transmission from wild animals, while intensive farming amplifies the impact of the disease due to the high density, genetic proximity, increased immunodeficiency, and live transport of farmed animals. Second, we describe the various direct and indirect costs of animal-based infectious diseases, and in particular, how these diseases can negatively impact the economy and the environment. Last, we discuss policies to reduce the social costs of infectious diseases. While existing regulatory frameworks such as the "One Health" approach focus on increasing farms' biosecurity and emergency preparedness, we emphasize the need to better align stakeholders' incentives and to reduce meat consumption. We discuss in particular the implementation of a "zoonotic" Pigouvian tax, and innovations such as insect-based food or cultured meat.

SELECTION OF CITATIONS
SEARCH DETAIL